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Ahstkact. We study the stability of the soliton-like polar00 states in a molecular chain by means 
of. a perturbation approach. We demonstrate that, under the influence of thermal fluctuations in 
the host lanice, the soliton gradually decays into delocalized (‘excitonic’) states. The soliton 
lifetime depends strongly on temperature and the coupling suength. 

The state of the excess (quasi-) particle (electron, exciton, , . .) in deformable media may be 
highly affected by a strong interaction with the underlying crystal lattice. So, for example, 
electrons in insulators or semiconductors may polarize and deform the host lattice and 
lead to the occurrence of a complex entity-the polaron, consisting of an electron and 
associated lattice distortion 11-41, In quasi-one-dimensional systems with short-ranged 
electron (exciton)-phonon interaction in the adiabatic limit, polarons form large-radius, 
stable and mobile soliton-like states [4-71. Therefore, the energy losses of the quasiparticle 
through dispersion and dissipation due to coupling with the environment may be prevented 
by formation of the soliton. For this reason the soliton concept has been proposed for 
understanding of the mechanisms of charge and energy transport in quasi-one-dimensional 
conductors [7] and molecular chains like or-helix macromolecules and acetanilide [SI. In the 
latter case an idealized Davydov model (DM) [5, 6, 81, representing an extra quasiparticle 
(electron, exciton, . . .) interacting with low-frequency acoustic modes of the underlying ID 
lattice, has been proposed as a theoretical framework for the description of transport in 

In applications to realistic physical systems, a crucial problem is examination of 
the soliton’s dynamics, and, in particular, its stability under the influence of various 
perturbations that can arise during its motion. That is why various aspects of the DM theory 
concerning its relevance for the understanding of the fundamental transport mechanisms, 
especially in biological structures, have b e g  critically re-examined over the last decade 
[9-11]. Special attention was paid to examination of the soliton’s stability at biologically 
relevant temperatures and this problem still remains open [lZ]. We can safely accept, 
however, the applicability of the Davydov ansatz (DA) in +e highly adiabatic and strong- 
coupling limit where the semiclassical treatment of phonons is justified. 
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In the present paper we shall analyse some aspects of the soliton stability arising due 
to the non-integrability of the Davydov set of equations: 

1 
i f i h  t )  = (A - 2 J ) @ ( x ,  t )  - JR& + - FYeiqz(pq + pf,)@(x, f )  (la) 

f i l l  

Here @ ( x ,  t )  and &(t) denote the electron (exciton) wave function (normalized to unity) 
and the coherent phonon amplitude respectively; A is the on-site excitation energy in the 
molecular chain, J is the intersite transfer matrix element, while RO is the lattice constant. 
Fy = 2~i@/2Mu,)'/'qRo is the Fourier component of the electron (exciton)-phonon 
interaction where x is the coupling constant, M is the mass of the units in the host lattice, 
and for the phonon frequency wq we adopt the acoustic linear dispersion law, i.e., wq = coiq 1 
with CO the speed of sound in the molecular chain. 

The system described by equations ( l a )  and (lb) is non-integrable (see also [13]). 
Therefore the interaction of the solitary excitation with phonons is expected to be inelastic, 
and the soliton should gradually decay into delocalized band states. This possibility is 
a consequence of the fact that the full spectrum of the electron (exciton) trapped by the 
lattice distortion contains one bound state (soliton) and a continuum of delocalized (band) 
states. In the context of the DM these delocalized states are usually called 'excitons' or 
exciton-like ones 1141. Thus, in the presence of perturbations there is a possibility of energy 
exchange between solitons and 'excitons' so that the soliton might decay into band states. In 
what follows below, we assume the applicability of the semiclassical approximation which 
provides the validity of the Davydov set of equations (1). It implies that we are dealing with 
systems for which the adiabatic and continuum approximations are meaningful. The first 
condition provides justification for the semiclassical time-dependent variational treatment 
(the so-called Davydov ansatz) and assumes large values of the adiabatic parameter, E >> 1, 
where B E 2JRo/fico. It represents the ratio of the exciton band width to the maximal 
phonon energy. The second condition imposes the restriction on the maximal value of the 
coupling constant, which is limited to small values [14, 151. The relevant parameter is the 
ratio of the small polaron binding energy (Eb = 1, IFq1'/hwY) to the maximum phonon 
energy, i.e. S = 2EbRo/hco. 

Under these conditions, the system (1) admits the well known soliton solution assuming 
that I@(x, t)]' = I@(x - ut)!', where U is the soliton velocity. This implies a particular 
form for the phonon amplitudes, @;st), which can be immediately obtained from equation 
(lb): 

(the integration variable is y x - u t ) .  Equation (2) represents, however, only a particular 
solution to the inhomogeneous equation (lb), while its general solution should also contain 
a solution to the corresponding homogeneous equation. The latter one is of the form 
@(t)  = &(0)e-ioqr, and in the present context it represents the inhence of the thermostat. 
Therefore the general solution to equation (lb) is 

For a system at T = 0, the incoherent part of By ( t )  is absent, while at a finite temperature 
it is this linear part that acts on the soliton as a perturbation representing random fluctuations 
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of the medium. The importance of this term for the soliton's stability has been pointed out 
[16, 171, but hitherto no quantitative examination of its influence has been carried out. 

Substituting into equation ( l a )  the phonon amplitudes as per equation (3), we obtain a 
perturbed nonlinear Schrodinger (NLS) equation for the wave function 4 ( x ,  t ) :  

For the initial conditions which correspond to a lattice in thermal equilibrium, one can 

(6) 

Here T is the temperature, while the small polaron binding energy is given explicitly as 
Eb 2x'R;/Mc; and coj j c o  (recall j il). Notice that a more general correlator of 
the effective random force in equation (4) was considered in [18], in terms of the interaction 
of a soliton with a random acoustic field (this was a model of the interaction between the 
Langmuir and ion-acoustic waves in a plasma, based on the famous Zakharov equations 
[19]). In [18], it was assumed that the random acoustic field was determined by independent 
random distributions of the acoustic field, n(x, t ) ,  and of its time derivative n , ( x ,  t )  at the 
initial moment t = 0. In the adiabatic approximation (the group velocities of the Langmuir 
waves were assumed much smaller than the speed of sound), this gave rise to the same 
equation (4); however, the correlator (6) is a special particular case of that considered in 
[HI,  whose analysis will be closely followed below. 

In what follows, we shall consider very slow solitons (u/co << I), and equations (5) and 
(6) will be written in the dimensionless form using the definitions z = x / R o ,  T E 2 J f / h ,  
and G = E b / J .  so that they transform into 

(4') 

find that the correlation function of the force (5) is 

( f ( x ;  f)f(x', t '))  = EbksTRo S [ X  - X' + coj(t - t')]. 
j=+1 

illrz + +?kZ + W z ,  r)I2llr(z, 5 )  = g(zj r)llr(z, 

, (g(z, r)g(z' ,  r')) = S[Z - z'+ j c ( r  - r'11. (6') 
j=+1 

The nonlinearity parameter G was absorbed into the scaled amplitude $ ( z ,  r )  s &@(x, t ) ,  
while the constant multiplier A - 2 J  is removed by the simple transformation $(x, t )  = 
ei(A-2')r@(x, f). In equation (6'), E ( T )  = d-, while c = hco/2JRo (= B-' )  
plays the role of the speed of sound in dimensionless units. Clearly, the applicability of the 
adiabatic (semiclassical) condition restricts our analysis to the small-c limit, which is still 
assumed to be larger than the soliton's velocity and the group velocity of the 'radiation'. 

The unperturbed NLS equation has a soliton solution and a continuum set of delocalized 
(band) states. In the context of the underlying single-polaron problem we are interested only 
i n  the long-time behaviour of the soliton solution. In the absence of perturbations equation 
(4') is an exactly solvable one, possessing an infinite set of integrals of motion. Here we 
will only need the first one involving the norm or particle number: 

J-m J-C€ 
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where q comes from the normalization of the soliton solution, 

$sol(z, r )  = iq sech[q(z - vr)]eiivr-if(uz-n2)1 (8) 
and N(h) = n-'Inla(h)1* comes from the continuum component and represents the 
spectral particle number density of the 'radiation field' at the wave number 2h. a(h) is 
the transmission coefficient known in the inverse scattering transform (IST) [20]. For the 
single-polaron problem N = 1. The perturbation in equation (4') is a norm-conserving 
one ( a N / a r  = 0), so that the possible decay of the soliton amplitude is the result of 
the increase of the number of 'quanta' (particles) in the radiation field. According to the 
general perturbation theory based upon IST [20, 211, the decay of the soliton's amplitude 
is connected with the averaged emission rate spectral density [IS, 201: 

The right-hand side of equation (5) can be evaluated using the results of the perturbation 
theory based on the IST 

where the quantity B(h, 7) = b(h, r)e-4i*2i (b(h, 7) is the IST reflection coefficient) may 
be calculated as 

Here @('.*)(z,A) stands for the two-component one-soliton Jost function for the NSE 
equation which can be found in [ZO]. while P ( z )  stands for the right-hand side of equation 

In order to justify the application of the perturbation theory, let us estimate the values of 
the relevant physical parameters of the system. At first we can easily relate the unperturbed 
soliton's amplitude to the energy parameters of the underlying polaron system by evaluating 
the norm of @.?(z,7).  We assume that initially radiation is absent and, using the soliton 
solution for @(z, r )  (or @(z, T ) ) ,  we find 2q = G. Since G is equal to the inverse soliton's 
width, applicability of the continuum approximation demands that q <( 1. On the other 
hand, the perturbation theory demands the smallness of the parameter c z ( T )  in equation 
(6') as compared with q3, i.e. &T) << q3 [18, 211. Using the explicit form of c ( T ) ,  this 
condition becomes ( k a T / J )  << q2. Since the soliton's width is expected to be typically 
of the order of ten to twenty 1attic.e constants, the adiabatic condition can be satisfied in 
a large class of materials of interest. We note that J is estimated to be of the order of 
1 eV [22, 231, which provides the applicability of the perturbative treatment even at high 
temperatures (we actually need q2 >> K-' T). In addition, we have assumed that the 
group velocity of the delocalized states is small as compared to the speed of sound. This 
condition imposes arestriction on the maximum value of the wave number of the 'radiation 
field': Ihj <( c/4 [18]. 

(4'). 

It is more convenient to express the fluctuation force in equation (4') in the form [16] 

where the corresponding coefficients are 
1 1 

 AI(^) = 4 i r ~ F ; P - y  A-I(q) = --F*B* 4zJ '/ 'I' 
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The only non-vanishing conelators of these are given by 

(Al(q)AT(q')) = (A-i(q)A?,(q')) = -Hq -4'). (14) 

Using equation (Il), after substitution of the single-soliton Jost functions (see, e.g., appendix 
A in [ZO]) we have 

To find B(h).  we first multiply equation (15) by ea', keeping in mind that at some later 
stage we will take the limit CY -+ 0 [IS]. This trick corresponds to adiabatically turning on 
the perturbation which was absent at s = -W. Then after the integration over t we have 

B*(A) = - S m d q  q2 
4 A 2 +  7'14 

erl~-iticlvl-4(~*i$/4))1 
(16) .E cosh ((z/Zq)(q + 2A)) icu + jclql - 4(A2 + $14). ,=*I 

Combining the last two equations and averaging their product over the initial (equilibrium) 
lattice degrees of freedom, we finally obtain 

Aj(q) X 

In deriving this equation, we used the identity (x + ia)-l = P(l/n) + irrS(x), P being the 
symbol of the principal value. 

Combining the last equation with equation (9) we may find the averaged soliton decay 
rate. For that purpose we have to calculate the total mean power of the emission (averaged 
emission rate), which demands evaluation of j_'," dA((d/dr)N(h)). The evaluation of this 
integral is quite difficult and in the general case its explicit expression cannot be found in 
a closed form analytically. However, it can be satisfactorily estimated by means of the 
approximations proposed in [18. 20-21] if one of the following conditions is satisfied (i) 
s <( c or (ii) s > c. 

The first condition ( q  << c) is valid at a sufficiently late stage of the soliton's decay 
or in the case when the soliton is initially spread over a large number of lattice sites and 
the adiabaticity parameter is not too high. Using the expression for the soliton amplitude 
and rescaled speed of sound this condition can be written as S <( 1. On the other hand the 
second condition holds in the strong-coupling (S >> 1) limit, which, in this particular case, 
is equivalent to the high-adiabatic limit: namely. if the adiabatic parameter is very large (in 
[21, 221 it was found that B - lo2), then condition (ii), which demands large values for 
the coupling constant, is satisfied if the continuum approximation (7 - lo-') holds. 

Let us note that smallness of the coupling constant is one of the most important 
conditions for the generation and existence of solitons in molecular chains [17]. However, 
soliton existence is not restricted to the weak-coupling case only. In particular, in recent 
studies [14] of the self-trapping phenomena in the onedimensional electron (exciton)- 
phonon systems it was found that solitons could be formed even in the strong-coupling case if 
the adiabaticity parameter is large enough. Therefore analysis of the soliton decay demands 
the estimation of the total averaged emission rate in both cases mentioned above. More 
details concerning the influence of the values of the physical parameters on soliton existence 
can be found in [14]. It is straightforward to see that, under this condition, the spectral 
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density in equation (17) has two pronounced maxima at the points h+ E A w 7 q 2 / 2 c ,  at 
which the argument of the function cosh in equation (17) vanishes (it vanishes also at the 
points h T i c ,  which, however, lie beyond the framework of applicability of the above 
adiabatic approximation, 1.L << c/4). Widths of these maxima are Ah - q, so that they are 
well separated under the adopted assumption v2 << cz. Consequently, the main contribution 
to the integral in equation (9) comes from the vicinities of the points A+. Calculating the 
integral in this approximation, we obtain from equation (9) the following evolution equation 
for the soliton's amplitude: 

Straightforward integration of equation (18) yields the solution 

where q,j = Eb/2J is an initial value of the soliton's amplitude. In accordance with what 
was said above and restoring the physical time t 5 hr/2J, we obtain from equation (19) 

from which one can easily estimate a soliton's lifetime 

t1p = 1.42(TS5)-' x 10-"s. (21) 
Notice that the decay of the soliton into 'radiation', described by equations (19) and (20), 
is very slow. 

In the case when the condition (ii) holds (q >> c) ,  the averaged spectral density is 
symmetric with respect to the point h = 0 and has two maxima for hj = ic /4 ,  while for 
h = 0 it approaches its minimum. However, as follows from (17), the magnitude of the 
averaged emission rate spectral density in all three h points is practically identical. Following 
[21], we may estimate the total averaged emission rate directly integrating equation (17) 
over h by adopting the following approximation: 

to obtain 

This equation cannot be used for an explicit evaluation of the time dependence of the soliton 
amplitude, but contains enough information for a qualitative description of the soliton decay 
in the strong-coupling and high-adiabatic limit. In order to estimate the rate of the soliton 
amplitude decay, we plot in figure 1 the function P(z) = z9/2e-"r (where z = q/c), which 
practically determines the dependence of the total averaged emission rate on q. The small- 
z case is what we examined in condition (i). In the region where condition (ii) is well 
satisfied, i.e. z >> 1, dq/dt almost vanishes, which means that, in the strong-coupling and 
highly adiabatic limit, the soliton is extremely stable, having practically an infinite lifetime. 
Its stability breaks down if 2 is not too large (1.5 < z i 4.0). In terms of the basic physical 
parameters (S ,  B ) ,  this case corresponds to the intermediate region where. as shown in [14], 
quantum fluctuations of the lattice play an important role. Therefore, this intermediate case 
(when P ( z )  jL 0) lies beyond the validity of the classical equations (1)-(6'). Consequently 
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satisfactory analysis of the soliton decay under these circumstances requires taking into 
account the quantum nature of the phonon field which causes renormalization of the system 
parameters due to the so-called ‘dressing’ effect [141. 

0.040 

0.030 

e 
0 020 

0.010 

On the basis of the present analysis we conclude that soliton evolution may display 
quite different behaviour depending on the values of the basic physical parameters. Thus, 
in the weak-coupling case thermal fluctuations of the host lattice act perturbatively on the 
soliton, tending to destroy it by causing leakage of the ‘radiation’ from it. Unlike the T = 0 
case, when the soliton’s lifetime is infinite, at finite temperatures its amplitude gradually 
decays while its width increases. This is a consequence of the flow of energy from the 
soliton to the band states. The rate of a i s  process is strongly influenced by the value of the 
coupling constant whose growth enhances soliton decay. Since our analysis concerns the 
weak-coupling limit, the rate of this process, as described by equations (19)-(21), is very 
small. Note that although this part of our analysis is focused on the weak-coupling case, 
S cannot be extremely small since soliton formation demands that it should be bigger than 
some small but finite threshold value [14, 171. Thus the coupling constant plays a twofold 
role: while, on one hand, formation of the soliton (polaron) demands finite coupling, on 
the other hand it also determines (at T = 0) the strength of the influence of the thermal 
fluctuations which have an opposite effect on the soliton stability. Thus, the stability of the 
soliton at finite temperatures is determined by a balance between these two effects. 

In [18], analysis of the radiative decay of the soliton with the above-mentioned 
correlators for the random force in equation (4), more general than those given by equation 
(6), has demonstrated that in the general case the decay is exponential, i.e., it is essentially 
faster than as per equations (19) and (20). Only in a special particular case does the model 
considered in [I81 lead to the same slow law of the soliton’s decay as in the present work. 
Nevertheless, it is clear that an estimate for the characteristic soliton lifetime in physical 
units, following from equation (20), will be the same whatever the particular assumption 
aboui the correlators. 

If, however, the system parameters fall in the strong-coupling and adiabatic limit, 
solitons become extremely stable. In the case of intermediate coupling and not too high 
adiabaticity the present method should be modified in order to take into account quantum 
effects. 

In conclusion, in this work we have demonstrated that thermal fluctuations of the 
host lattice act perturbatively on the soliton, tending to destroy it, causing leakage of the 
‘radiation’. Unlike the T = 0 case, when the soliton’s lifetime is infinite, at finite T its 
amplitude gradually decays while its width increases. This is a consequence of the flow of 
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energy from the soliton to the band states. The rate of this process is strongly influenced by 
the value of the coupling constant and even at very low temperatures in the strong-coupling 
limit the soliton may decay rapidly enough. Thus the strength of the coupling constant plays 
a twofold role: while, on one hand, the formation of the polaron (soliton) demands a strong 
coupling, on the other hand it also defines (at T # 0) the strength of the influence of thermal 
excitations, which has the opposite effect on the soliton's stability. Obviously, stability of 
the soliton at finite temperatures demands a trade-off between these two tendencies: therefore 
the ratio S of the polaron binding energy to the maximum phonon energy should not be very 
large. This conclusion is supported by some recent results [ 141 where it was shown that the 
combined effects of the quantum nature of phonons and adiabaticity leads to a reduction of 
the admitted values of the coupling constant. 

Finally, let us note that the present analysis is carried out in a classical manner and is 
thus a counterpart of the quantum procedure of Schweitzer [15], who considered the decay 
of the soliton into exciton states by treating the linearized lattice modes as an interaction 
which generated such a process. In the region of the parameter space where we expect the 
applicability of semiclassical methods, we feel that the present analysis is more relevant. 
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